Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems.

نویسندگان

  • Bao-ling Yuan
  • Xiang-zhong Li
  • Nigel Graham
چکیده

The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from DMP degradation were identified by HPLC and GC/MS analyses. The analytical results identified dimethyl 3-hydroxyphthalate and dimethyl 2-hydroxyphthalate as the two main intermediate products from the DMP degradation in the TiO2-UV-O2 system, while in contrast phthalic acid was found to be the main intermediate product in the TiO2-UV-Fe(VI) system. These findings indicate that DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) systems followed different reaction pathways. An electron spin resonance analysis confirmed that hydroxyl radicals existed in the TiO2-UV-O2 reaction system and an unknown radical species (most likely an iron-oxo species) is suspected to exist in the TiO2-UV-Fe(VI) reaction system. Two pathway schemes of DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) reaction systems are proposed. It is believed that the radicals formed in the TiO2-UV-O2 reaction system preferably attack the aromatic ring of the DMP, while in contrast the radicals formed in the TiO2-UV-Fe(VI) reaction systems attack the alkyl chain of DMP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation of Sulfonamides in Aqueous Solution by UV-TiO2-Fe(VI)

The photocatalytic degradation of sulfonamides in aqueous TiO2 suspension under UV irradiation has been investigated using potassium ferrate as electron acceptors. The results showed that the stability of Fe(VI) is dependent on pH significantly, and the stability reduces obviously in the presence of UV-TiO2. The experiments indicated that Fe(VI) could effectively scavenge the conduction band el...

متن کامل

Degradation of di-n-butyl phthalate using photoreactor packed with TiO2 immobilized on glass beads.

This study evaluated the performance of a photoreactor packed with TiO2/glass, TiO2 immobilized on glass beads, initiated by UV irradiation, denoted as UV/TiO2/glass, to decompose di-n-butyl phthalate (DBP) in an aqueous solution. The photodegradation rate of DBP by this UV/TiO2/glass process was found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. The experi...

متن کامل

تجزیه فتوکاتالیستی فنل با استفاده فرایند UV/TiO2 غنی شده با آهن سه ظرفیتی از محیط های آبی

Backgrounds and Objectives: Phenol and phenolic compounds are widely used in industry and daily liFe, and are of high interest due to stability in the environment, dissolution ability in water and health problems. In this regard, phenol removal from water is of high importance. The purpose of this study was to investigate the efficiency of photodegradation process for removal of phenol from aqu...

متن کامل

Comparative studies of degradation of dye intermediate (H-acid) using TiO2/UV/H2O2 and Photo-Fenton process

The present work is focused on the homogeneous and heterogeneous photo-catalytic degradation of Hacid, a non-biodegradable dye intermediate from dye manufacturing industries, using Advanced Oxidation Processes (AOPs) such as UV, UV/H2O2, UV/H2O2/Fe 2+ (photo-Fenton process), UV/TiO2 and UV/H2O2/TiO2. Degradation experiments were carried out to optimize the amount of catalyst, effect of Hacid co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2008